Breve Tutorial de Brainfuck
Pode haver coisa mais bela que uma linguagem que nos faz feliz por fazer aparecer meia dúzia de caracteres no ecrã?
Brainfuck é uma dessas linguagens (linguagem esotérica), que, acreditem ou não, é Turing-complete.
Todo o código fonte é composto apenas por 8 caracteres (operadores), todos os outros caracteres são ignorados (cuidado para não usar esses caracteres no que estão à espera de ser comentários).
Compilador
Antes de mais nada eu vou por aqui o código fonte do compilador... sim... o código fonte do compilador, leram bem... Tem apenas ~270 linhas. Podem ver no cabeçalho como o compilar.
bf.asm:
;; bf.asm: Copyright (C) 1999-2001 by Brian Raiter, under the GNU
;; General Public License (version 2 or later). No warranty.
;;
;; To build:
;; nasm -f bin -o bf bf.asm && chmod +x bf
;; To use:
;; bf < foo.b > foo && chmod +x foo
BITS 32
;; This is the size of the data area supplied to compiled programs.
%define arraysize 30000
;; For the compiler, the text segment is also the data segment. The
;; memory image of the compiler is inside the code buffer, and is
;; modified in place to become the memory image of the compiled
;; program. The area of memory that is the data segment for compiled
;; programs is not used by the compiler. The text and data segments of
;; compiled programs are really only different areas in a single
;; segment, from the system's point of view. Both the compiler and
;; compiled programs load the entire file contents into a single
;; memory segment which is both writeable and executable.
%define TEXTORG 0x45E9B000
%define DATAOFFSET 0x2000
%define DATAORG (TEXTORG + DATAOFFSET)
;; Here begins the file image.
org TEXTORG
;; At the beginning of the text segment is the ELF header and the
;; program header table, the latter consisting of a single entry. The
;; two structures overlap for a space of eight bytes. Nearly all
;; unused fields in the structures are used to hold bits of code.
;; The beginning of the ELF header.
db 0x7F, "ELF" ; ehdr.e_ident
;; The top(s) of the main compiling loop. The loop jumps back to
;; different positions, depending on how many bytes to copy into the
;; code buffer. After doing that, esi is initialized to point to the
;; epilog code chunk, a copy of edi (the pointer to the end of the
;; code buffer) is saved in ebp, the high bytes of eax are reset to
;; zero (via the exchange with ebx), and then the next character of
;; input is retrieved.
emitputchar: add esi, byte (putchar - decchar) - 4
emitgetchar: lodsd
emit6bytes: movsd
emit2bytes: movsb
emit1byte: movsb
compile: lea esi, [byte ecx + epilog - filesize]
xchg eax, ebx
cmp eax, 0x00030002 ; ehdr.e_type (0x0002)
; ehdr.e_machine (0x0003)
mov ebp, edi ; ehdr.e_version
jmp short getchar
;; The entry point for the compiler (and compiled programs), and the
;; location of the program header table.
dd _start ; ehdr.e_entry
dd proghdr - $$ ; ehdr.e_phoff
;; The last routine of the compiler, called when there is no more
;; input. The epilog code chunk is copied into the code buffer. The
;; text origin is popped off the stack into ecx, and subtracted from
;; edi to determine the size of the compiled program. This value is
;; stored in the program header table, and then is moved into edx.
;; The program then jumps to the putchar routine, which sends the
;; compiled program to stdout before falling through to the epilog
;; routine and exiting.
eof: movsd ; ehdr.e_shoff
xchg eax, ecx
pop ecx
sub edi, ecx ; ehdr.e_flags
xchg eax, edi
stosd
xchg eax, edx
jmp short putchar ; ehdr.e_ehsize
;; 0x20 == the size of one program header table entry.
dw 0x20 ; ehdr.e_phentsize
;; The beginning of the program header table. 1 == PT_LOAD, indicating
;; that the segment is to be loaded into memory.
proghdr: dd 1 ; ehdr.e_phnum & phdr.p_type
; ehdr.e_shentsize
dd 0 ; ehdr.e_shnum & phdr.p_offset
; ehdr.e_shstrndx
;; (Note that the next four bytes, in addition to containing the first
;; two instructions of the bracket routine, also comprise the memory
;; address of the text origin.)
db 0 ; phdr.p_vaddr
;; The bracket routine emits code for the "[" instruction. This
;; instruction translates to a simple "jmp near", but the target of
;; the jump will not be known until the matching "]" is seen. The
;; routine thus outputs a random target, and pushes the location of
;; the target in the code buffer onto the stack.
bracket: mov al, 0xE9
inc ebp
push ebp ; phdr.p_paddr
stosd
jmp short emit1byte
;; This is where the size of the executable file is stored in the
;; program header table. The compiler updates this value just before
;; it outputs the compiled program. This is the only field in the two
;; headers that differs between the compiler and its compiled
;; programs. (While the compiler is reading input, the first byte of
;; this field is also used as an input buffer.)
filesize: dd compilersize ; phdr.p_filesz
;; The size of the program in memory. This entry creates an area of
;; bytes, arraysize in size, all initialized to zero, starting at
;; DATAORG.
dd DATAOFFSET + arraysize ; phdr.p_memsz
;; The code chunk for the "." instruction. eax is set to 4 to invoke
;; the write system call. ebx, the file handle to write to, is set to
;; 1 for stdout. ecx points to the buffer containing the bytes to
;; output, and edx equals the number of bytes to output. (Note that
;; the first byte of the first instruction, which is also the least
;; significant byte of the p_flags field, encodes to 0xB3. Having the
;; 2-bit set marks the memory containing the compiler, and its
;; compiled programs, as writeable.)
putchar: mov bl, 1 ; phdr.p_flags
mov al, 4
int 0x80 ; phdr.p_align
;; The epilog code chunk. After restoring the initialized registers,
;; eax and ebx are both zero. eax is incremented to 1, so as to invoke
;; the exit system call. ebx specifies the process's return value.
epilog: popa
inc eax
int 0x80
;; The code chunks for the ">", "<", "+", and "-" instructions.
incptr: inc ecx
decptr: dec ecx
incchar: inc byte [ecx]
decchar: dec byte [ecx]
;; The main loop of the compiler continues here, by obtaining the next
;; character of input. This is also the code chunk for the ","
;; instruction. eax is set to 3 to invoke the read system call. ebx,
;; the file handle to read from, is set to 0 for stdin. ecx points to
;; a buffer to receive the bytes that are read, and edx equals the
;; number of bytes to read.
getchar: mov al, 3
xor ebx, ebx
int 0x80
;; If eax is zero or negative, then there is no more input, and the
;; compiler proceeds to the eof routine.
or eax, eax
jle eof
;; Otherwise, esi is advanced four bytes (from the epilog code chunk
;; to the incptr code chunk), and the character read from the input is
;; stored in al, with the high bytes of eax reset to zero.
lodsd
mov eax, [ecx]
;; The compiler compares the input character with ">" and "<". esi is
;; advanced to the next code chunk with each failed test.
cmp al, '>'
jz emit1byte
inc esi
cmp al, '<'
jz emit1byte
inc esi
;; The next four tests check for the characters "+", ",", "-", and
;; ".", respectively. These four characters are contiguous in ASCII,
;; and so are tested for by doing successive decrements of eax.
sub al, '+'
jz emit2bytes
dec eax
jz emitgetchar
inc esi
inc esi
dec eax
jz emit2bytes
dec eax
jz emitputchar
;; The remaining instructions, "[" and "]", have special routines for
;; emitting the proper code. (Note that the jump back to the main loop
;; is at the edge of the short-jump range. Routines below here
;; therefore use this jump as a relay to return to the main loop;
;; however, in order to use it correctly, the routines must be sure
;; that the zero flag is cleared at the time.)
cmp al, '[' - '.'
jz bracket
cmp al, ']' - '.'
relay: jnz compile
;; The endbracket routine emits code for the "]" instruction, as well
;; as completing the code for the matching "[". The compiler first
;; emits "cmp dh, [ecx]" and the first two bytes of a "jnz near". The
;; location of the missing target in the code for the "[" instruction
;; is then retrieved from the stack, the correct target value is
;; computed and stored, and then the current instruction's jmp target
;; is computed and emitted.
endbracket: mov eax, 0x850F313A
stosd
lea esi, [byte edi - 8]
pop eax
sub esi, eax
mov [eax], esi
sub eax, edi
stosd
jmp short relay
;; This is the entry point, for both the compiler and its compiled
;; programs. The shared initialization code sets eax and ebx to zero,
;; ecx to the beginning of the array that is the compiled programs's
;; data area, and edx to one. (This also clears the zero flag for the
;; relay jump below.) The registers are then saved on the stack, to be
;; restored at the very end.
_start:
xor eax, eax
xor ebx, ebx
mov ecx, DATAORG
cdq
inc edx
pusha
;; At this point, the compiler and its compiled programs diverge.
;; Although every compiled program includes all the code in this file
;; above this point, only the eleven bytes directly above are actually
;; used by both. This point is where the compiler begins storing the
;; generated code, so only the compiler sees the instructions below.
;; This routine first modifies ecx to contain TEXTORG, which is stored
;; on the stack, and then offsets it to point to filesize. edi is set
;; equal to codebuf, and then the compiler enters the main loop.
codebuf:
mov ch, (TEXTORG >> 8) & 0xFF
push ecx
mov cl, filesize - $$
lea edi, [byte ecx + codebuf - filesize]
jmp short relay
;; Here ends the file image.
Depois de compilado, movam o ficheiro para algum lugar da $PATH (ex: /usr/local/bin) (se quiserem instalar-lo claro...).
Também vai decerto dar jeito um Makefile para tornar a compilação dos vossos programas mais prática:
srcfile=source.bf # Change me
ofile=outbin # Change me
all: $(ofile)
$(ofile): $(srcfile)
bf < $< > $@
chmod 700 $@
clean:
rm -f $(ofile)
A linguagem
Em brainfuck o mundo é uma array unidimensional, é essa a memoria que têm (inicialmente a posicao no array é 0 e todas as celulas estão a 0). Podem navegar no array, incrementar/decrementar celulas dessa array, pedir input (apenas na forma de caracteres), escrever output, e executar loops (com uma condição imutavel).
Lista de operadores
Operador | Significado |
---|---|
> | Desloca-se uma celula para a direita |
< | Desloca-se uma celula para a esquerda |
+ | Incrementa o valor da celula |
- | Decrementa o valor da celula |
. | Escreve o caracter correspondente a celula actual |
, | Escreve o caracter para a celula actual |
[ | Delimita o inicio de um loop |
] | Delimita o fim de um loop |
Tudo o resto é ignorado pelo compilador, por isso podemos considerar como sendo comentários.
Os loops realizam-se enquanto o valor da celula actual (actual no inicio/fim do ciclo, essa expressao é avaliada a cada iteração) for diferente de zero.
Exemplos
[-] Isto coloca a celula actual a 0(ponto) Enquanto a celula actual não for zero decrementa :)
Por exemplo, para copiar (na verdade mover) um numero para outra celula pode-se fazer:
, Pede input ao user
[->+<] Decrementa a 1º celula(virgula) Move_se para a 2º(virgula) incremeta_a(virgula) e volta novamente para a 1º(ponto)
Assim que a 1º celula estiver a 0(virgula) tudo estara' codiado(virgula) e o loop termina
> Move_se para a 2º celula
. Escreve o resultado (que deve ser igual ao input)
Um exemplo parecido que permite somar dois numeros:
,>,< Pede 2 caracteres ao user
[->+<]
>.
Nota: É provavel que o caracter somado não tenha representação gráfica, um bom caracter a somar á o newline (10).
Outro programa interessante é o que lê uma scring e mostra invertida:
-- -- -- -- -- Simula uma iteracao(virgula) no loop esta celula vai passar a ter o valor zero(virgula) que vai também ser o nosso indicador de fim
quando formos ler a string ao contrario
[
++ ++ ++ ++ ++ Incrementa 10 que foi o valor decrementado na iteracao anterior(virgula) com o unico proposito de fazer o loop terminar
> Avanca para ler mais um caracter
, Le um caracter
-- -- -- -- -- Decremeta 10 para que se o caracter lido for o newline (que vale 10) o ciclo termine
]
< O ultimo caracter lido foi o newline(virgula) e a celula actual vale zero
[.<] Escreve todos os caracteres ate encontrar a celula a zero(virgula) coisa que é assegurada logo no inicio do programa
++ ++ ++ ++ ++ . Escreve uma newline (que valendo 10(virgula) como temos a certeza da 1º celula estar a 0(virgula) basta isto)
Há até quem seja suficientemente génio/louco para escrever em brainfuck um algorithmo de teste de primalidade: http://esoteric.sange.fi/brainfuck/bf-source/prog/PRIME.BF. Podem ver mais programas interesantes em http://esoteric.sange.fi/brainfuck/bf-source/prog/